skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sra, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work examines the deep disconnect between existing theoretical analyses of gradient-based algorithms and the practice of training deep neural networks. Specifically, we provide numerical evidence that in large-scale neural network training (e.g., ImageNet + ResNet101, and WT103 + TransformerXL models), the neural network’s weights do not converge to stationary points where the gradient of the loss is zero. Remarkably, however, we observe that even though the weights do not converge to stationary points, the progress in minimizing the loss function halts and training loss stabilizes. Inspired by this observation, we propose a new perspective based on ergodic theory of dynamical systems to explain it. Rather than studying the evolution of weights, we study the evolution of the distribution of weights. We prove convergence of the distribution of weights to an approximate invariant measure, thereby explaining how the training loss can stabilize without weights necessarily converging to stationary points. We further discuss how this perspective can better align optimization theory with empirical observations in machine learning practice. 
    more » « less
  2. Determinantal Point Processes (DPPs) are elegant probabilistic models of repulsion and diversity over discrete sets of items. But their applicability to large sets is hindered by expensive cubic-complexity matrix operations for basic tasks such as sampling. In light of this, we propose a new method for approximate sampling from discrete k-DPPs. Our method takes advantage of the diversity property of subsets sampled from a DPP, and proceeds in two stages: first it constructs coresets for the ground set of items; thereafter, it efficiently samples subsets based on the constructed coresets. As opposed to previous approaches, our algorithm aims to minimize the total variation distance to the original distribution. Experiments on both synthetic and real datasets indicate that our sampling algorithm works efficiently on large data sets, and yields more accurate samples than previous approaches. 
    more » « less